# Search for Related-key Differential Characteristics in DES-like ciphers

#### Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

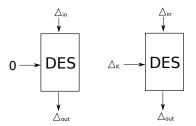
1 June 2010

University of Luxembourg, Luxembourg

Ivica Nikolić (joint work with Alex Biryukov)



- 2 Search Algorithms
- 3 Applications
- 4 Conclusions

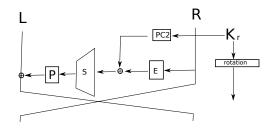



Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

## Single-Key vs Related-Key in DES

- DES has 64-bit state and 56-bit key
- Single-key diff. brute force  $\geq 2^{64}$
- Related-key diff. brute force ≥ 2<sup>120</sup>




Ivica Nikolić (joint work with Alex Biryukov)

## Description of DES-like Ciphers

- Has 16 rounds
- DES-like  $\equiv$  the S-boxes can be any

One round:



Ivica Nikolić (joint work with Alex Biryukov)



#### 2 Search Algorithms

#### 3 Applications





Ivica Nikolić (joint work with Alex Biryukov)

## Properties

#### Task: find the best related-key diff. char. Hence:

- Feasible
- Perform a full search



Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

# Algorithms

- Dynamic programming (requires memory)
- Matsui's approach
- Split approach



Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

# Matsui's Approach

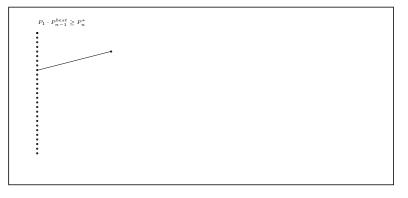
- Given the probabilities of the best 1, 2, ..., *r* − 1 round characteristics and some *r*-round characteristic it builds *t*he best *r*-round characteristic.
- Recursive; extend the characteristics only if its prob. × the prob. of the rest of the rounds is higher then the previous best prob. on all rounds.

Ivica Nikolić (joint work with Alex Biryukov)

# Matsui's Approach

For each r-1 round char.: extend for one round, and check if  $P_r \cdot P_{n-r}^{best} \ge P_n^*$  (if  $P_n > P_n^*$  update  $P_n^*$ )





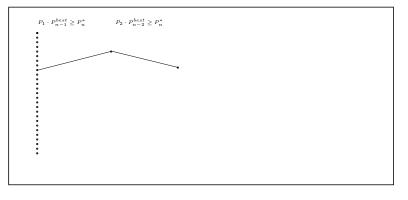

Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

## Matsui's Approach

For each r-1 round char.: extend for one round, and check if  $P_r \cdot P_{n-r}^{best} \ge P_n^*$  (if  $P_n > P_n^*$  update  $P_n^*$ )





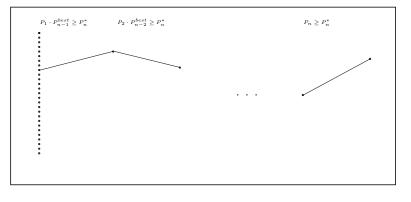

Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

## Matsui's Approach

# For each r-1 round char.: extend for one round, and check if $P_r \cdot P_{n-r}^{best} \ge P_n^*$ (if $P_n > P_n^*$ update $P_n^*$ )






Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

## Matsui's Approach

For each r-1 round char.: extend for one round, and check if  $P_r \cdot P_{n-r}^{best} \ge P_n^*$  (if  $P_n > P_n^*$  update  $P_n^*$ )





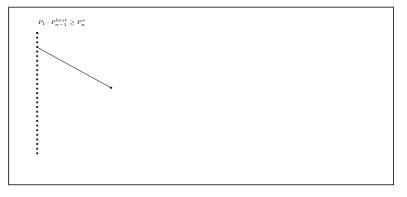
Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

# Matsui's Approach

For each r-1 round char.: extend for one round, and check if  $P_r \cdot P_{n-r}^{best} \ge P_n^*$  (if  $P_n > P_n^*$  update  $P_n^*$ )





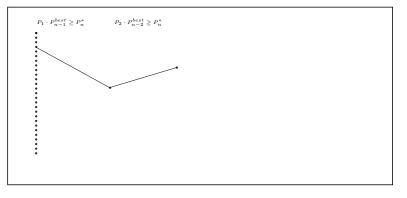

Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

## Matsui's Approach

For each r-1 round char.: extend for one round, and check if  $P_r \cdot P_{n-r}^{best} \ge P_n^*$  (if  $P_n > P_n^*$  update  $P_n^*$ )






Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

## Matsui's Approach

# For each r-1 round char.: extend for one round, and check if $P_r \cdot P_{n-r}^{best} \ge P_n^*$ (if $P_n > P_n^*$ update $P_n^*$ )






Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

## Matsui's Approach

For each r-1 round char.: extend for one round, and check if  $P_r \cdot P_{n-r}^{best} \ge P_n^*$  (if  $P_n > P_n^*$  update  $P_n^*$ )





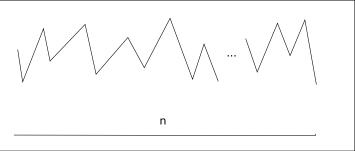
Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

# The Split Approach

Divide and conquer + inside out approach

**Fact:** If exists char. on n rounds with  $P_n$ , then exists sub char. on n/k consecutive rounds with  $\geq \sqrt[k]{P_n}$ 

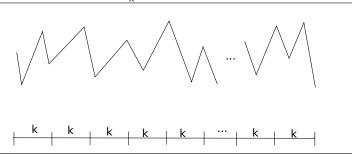

The split can be combined with Matsui's approach



Ivica Nikolić (joint work with Alex Biryukov)

# The Split Approach

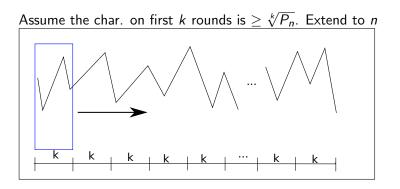
#### Characteristic on n rounds with $P_n$






Ivica Nikolić (joint work with Alex Biryukov)

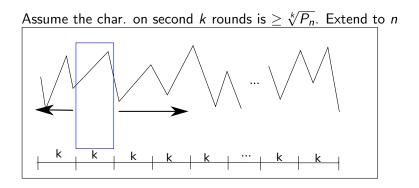
# The Split Approach


#### Divide *n* rounds into $\frac{n}{k}$ *k* rounds



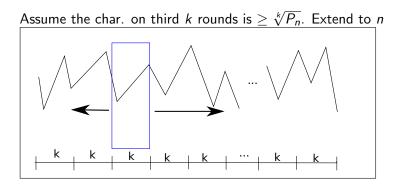
Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers


# The Split Approach



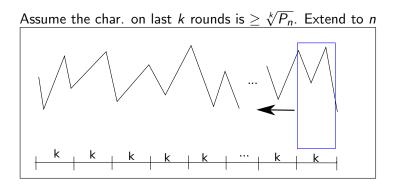
Ivica Nikolić (joint work with Alex Biryukov)


Search for Related-key Differential Characteristics in DES-like ciphers

# The Split Approach



Ivica Nikolić (joint work with Alex Biryukov)


# The Split Approach



Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

# The Split Approach



Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

# The Split Approach

# 

Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

# Starting Difference

- There are 2<sup>120</sup> starting differences
- Matsui's and the split provide bounds on probabilities of the first k rounds

Instead of brute forcing input diff., brute force the input-output diffs. for the S-boxes

Each input-output diff. adds to the total probability of a round

# Starting Difference

#### Single key (Matsui's approach in DES)

If input-output diffs. to S-boxes in 2 rounds are fixed, then input and output diffs. are fixed.



Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

University of Luxembourg, Luxembourg

# Starting Difference

#### Single key (Matsui's approach in DES)

If input-output diffs. to S-boxes in 2 rounds are fixed, then input and output diffs. are fixed.

#### Related key

If input-output diffs. to S-boxes in 3 rounds are fixed, then input and output diffs. are fixed **as well as**  $2^8$  **possible values of diff. in the key**.



# Algorithm

- Fix input-output diffs. to S-boxes in 3 consecutive rounds. Matsui's/split approach provide bounds on probability => no need to try all possible diffs.
- 2 Obtain the input difference and the output difference.
- 3 If Matsui's approach then extend this 3-round char. forward to *n* rounds; if split extend backwards and forwards.



#### 2 Search Algorithms

#### 3 Applications





Ivica Nikolić (joint work with Alex Biryukov)

## DES

| rounds | Single-key          | Related-key                                   | Method used     |
|--------|---------------------|-----------------------------------------------|-----------------|
| 4      | 2 <sup>-9.6</sup>   | $2^{-4.61}$                                   | RK Matsui'      |
| 5      | $2^{-13.21}$        | $2^{-7.83}$                                   | RK Matsui'      |
| 6      | $2^{-19.94}$        | $2^{-12.92}$                                  | RK Matsui'      |
| 7      | 2 <sup>-23.60</sup> | $2^{-20.38}$                                  | Split           |
| 8      | 2 <sup>-30.48</sup> | $2^{-29.75} \le \overline{P_8} < 2^{-22}$     | Limited Matsui' |
| 9      | $2^{-31.48}$        | $2^{-31.48}$                                  | Split + Matsui' |
| 10     | $2^{-38.35}$        | $\leq \overline{P_9}$                         |                 |
| 11     | $2^{-39.35}$        | $2^{-39.35}$ if $\overline{P_8} = 2^{-29.75}$ | RK Matsui'      |
| 12     | 2 <sup>-46.22</sup> | 2 <sup>-46.22</sup>                           | Split + Matsui' |
| 13     | 2 <sup>-47.22</sup> | $2^{-47.22}$                                  | Split + Matsui' |
| 14     | $2^{-54.09}$        | $\leq \overline{P_{13}}$                      |                 |
| 15     | $2^{-55.09}$        | $2^{-55.09}$                                  | RK Matsui'      |
| 16     | 2 <sup>-61.97</sup> | $\leq \overline{P_{15}}$                      |                 |



University of Luxembourg, Luxembourg

### DESL

| Round | Probability              |   |
|-------|--------------------------|---|
| 4     | $2^{-4.67}$              | 1 |
| 5     | 2 <sup>-7.24</sup>       |   |
| 6     | $2^{-12.09}$             |   |
| 7     | $2^{-19.95}$             |   |
| 8     | $\leq \overline{P_7}$    |   |
| 9     | $< 2^{-30}$              |   |
| 10    | $< 2^{-31}$              |   |
| 11    | $\leq \overline{P_{10}}$ |   |
| 12    | $< 2^{-40}$              |   |
| 13    | $< 2^{-41}$              |   |
| 14    | $\leq \overline{P_{13}}$ |   |
| 15    | $< 2^{-50}$              |   |
| 16    | $< 2^{-51}$              | ( |



University of Luxembourg, Luxembourg

Search Algorithms

Applications

### s2DES

| rounds | Single-key         | Related-key         |
|--------|--------------------|---------------------|
| 4      | 2 <sup>-6.8</sup>  | $2^{-5.19}$         |
| 5      | 2 <sup>-9.22</sup> | $2^{-8.0}$          |
| 6      | $2^{-14.35}$       | $2^{-12.61}$        |
| 7      | $2^{-17.03}$       | $2^{-17.03}$        |
| 8      | $2^{-21.96}$       | $2^{-21.96}$        |
| 9      | $2^{-22.71}$       | $2^{-22.71}$        |
| 10     | $2^{-27.35}$       | $2^{-27.35}$        |
| 11     | $2^{-28.39}$       | $2^{-28.39}$        |
| 12     | $2^{-34.07}$       | $2^{-34.07}$        |
| 13     | $2^{-34.07}$       | $2^{-34.07}$        |
| 14     | $2^{-39.75}$       | $2^{-39.75}$        |
| 15     | $2^{-39.75}$       | $2^{-39.75}$        |
| 16     | $2^{-45.42}$       | 2 <sup>-45.42</sup> |

Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg



- 2 Search Algorithms
- 3 Applications





Ivica Nikolić (joint work with Alex Biryukov)

Search for Related-key Differential Characteristics in DES-like ciphers

# Conclusions

- On higher rounds no better RK char. in DES
- Key schedule has no notable weakness
- Algorithms can be used for finding RK char. with high prob.  $(\geq 2^{-20})$  in any bit-oriented cipher with linear key schedule

Ivica Nikolić (joint work with Alex Biryukov)